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Abstract

Background—Many cases of Fuchs’ uveitis have been associated with persistent rubella virus 

infection. A 73-year-old male patient with typical Fuchs’ Uveitis Syndrome (FUS) first 

experienced heterochromia of the left eye at the age fourteen, when rubella was endemic in the 

US.

Objectives—The purposes of this report are to describe the patient’s FUS clinical presentations 

and to characterize the virus detected in the vitreous fluid.

Study design—The patient underwent a therapeutic pars plana vitrectomy in May 2013. A real-

time RT-PCR assay for rubella virus was performed on the vitreous fluid by Focus Diagnostics. 

Additional real-time RT-PCR assays for rubella virus detection and RT-PCR assays for generation 

of templates for sequencing were performed at the Centers for Disease Control and Prevention 

(CDC).

Results—The results from Focus Diagnostics were positive for rubella virus RNA. Real-time RT-

PCR assays at CDC were also positive for rubella virus. A rubella virus sequence of 739 

nucleotides was determined and phylogenetic analysis showed that the virus was the sole member 

of a new phylogenetic group when compared to reference virus sequences.

Conclusions—While FUS remains a clinical diagnosis, findings in this case support the 

association between rubella virus and the disease. Phylogenetic analysis provided evidence that 

this rubella virus was likely a previously undetected genotype which is no longer circulating. Since 

the patient had rubella prior to 1955, this sequence is from the earliest rubella virus yet 

characterized.
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1. Background

Fuchs’ uveitis syndrome was originally described by Ernest Fuchs’ in 1906 [1]. It has 

variously been referred to as Fuchs’ heterochromic cyclitis, Fuchs’ heterochromic 

iridocyclitis, Fuchs’ heterochromic uveitis, and most recently Fuchs’ uveitis syndrome 

(FUS) [1,2]. The typical characteristics of FUS include iris heterochromia, cyclitis, and 

cataract. Other characteristics of FUS include a mild anterior chamber reaction, the 

occurrence of small to medium-sized diffusely distributed stellate keratic precipitates, iris 

atrophy with or without heterochromia, and late-onset ocular hypertension or glaucoma 

[1,3,4]. Hypothesized causes of FUS include hypersensitivity, autoimmunity reactions, and 

infectious agents such as Toxoplasma gondii, cytomegalovirus (CMV), and herpes simplex 

virus (HSV) [5–8]. Recent reports suggest that rubella virus is a leading cause of FUS as 

rubella antibodies and/or nucleic acid have been detected in the vitreous fluid in FUS 

patients [9–15]. The significant decline of FUS cases in rubella post-vaccinated communities 

is consistent with a causal relationship between rubella infection and FUS [16].

In the last 10 years, the genetic diversity of RuVs have been documented and in 2005 a 

systematic nomenclature for rubella viruses was adopted by the World Health Organization 

(WHO) [17] in which genetic characterization of rubella virus identified two clades which 

differ by 8–10% at the nucleotide level. The clades are divided into 13 genotypes with 3–6% 

genetic distance between the genotypes within a clade.

2. Objectives

This report describes the molecular detection and genotypic characterization of rubella virus 

nucleic acid recovered from the vitreous fluid of a 73-year-old Pennsylvania man with a 

clinical diagnosis of FUS. The patient first experienced heterochromia of the left eye at age 

fourteen; thus, the rubella virus nucleic acid detected is likely due to rubella infection prior 

to 1953.

3. Study design

3.1. Rubella virus RNA detection

The vitreous fluid from the patient’s left eye collected at the time of vitrectomy was 

submitted to Focus Diagnostics (Cypress, CA) for the detection of DNA of T. gondii and 

RNA of rubella virus. The specimen was shipped on cold packs and RNA extraction was 

performed within 48 h of the specimen collection. At Focus Diagnostics, DNA/RNA was 

extracted from the sample using the MagNa Pure System (Roche Diagnostics, Indianapolis, 

IN). The T. gondii DNA was tested using a qualitative real-time PCR assay developed by 

Quest Diagnostics (Nichols Institute, Chantilly, Virginia). The rubella RNA was tested with 

a real-time RT-PCR assay developed by Focus Diagnostics and run on an ABI 7900 platform 
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(Life Technologies, Carlsbad, CA). The assay used Scorpion primers and targeted the E1 

gene in the rubella virus genome.

The sample was shipped from Focus Diagnostics to CDC with ice packs and was cold on 

arrival 72 h later. For tests performed at the CDC, the RNA was extracted from vitreous fluid 

on arrival 26 days post vitrectomy using the QIAamp Viral RNA Extraction Mini Kit 

(Qiagen, Valencia, CA) following the manufacturer’s instructions. Two real-time RT-PCR 

assays were performed in order to detect and confirm the integrity of rubella virus RNA in 

the specimen. The first assay, a laboratory developed real-time RT-PCR standard curve assay 

which targets the region between nucleotides (nts) 8812–8996 in the E1 gene, was 

performed as described in Abernathy et al. [18] with the addition of an additional reverse 

primer to improve detection of clade 2 viruses [19]; RNAse P was used as a reference gene 

to verify the presence of intact RNA in the sample. A second real-time RT-PCR assay used 

primers targeting the 5′ terminus of the viral genome (nt 195–323) [20]. All real-time 

reactions were performed using a Superscript qRT-PCR kit (Life Technologies, Carlsbad, 

CA) and the specimen RNA was run in triplicate. The CDC laboratory developed test has 

not been validated on vitreous humor as a metrix. Vitreous humor is a rare specimen for 

rubella virus detection; thus we are unable to procure sufficient specimens to validate the 

assay. Additionally, multiple freeze-thaw cycles and non-optimal shipping conditions likely 

did result in a reduction in the level of virus present in the sample. However, a sufficient 

amount of RNA remained allowing us to perform the analyses described in this manuscript

3.2. Sequencing and phylogenetic analysis

Two nested set amplifications were used to obtain templates for sequencing. The first nested 

set amplified a fragment containing 601 nts from the 3′ end of the WHO recommended 739 

nt genotyping window [17] using a two-step method. First-strand cDNA synthesis was 

performed with the SuperScript® III Reverse Transcriptase kit (Life Technologies) according 

to the manufacturer’s instructions. The cDNA was added to the first round PCR 

amplification using the Takara Ex-Taq DNA polymerase (Clontech Laboratories, Mountain 

View, CA) with primers RV11 (nts 8812–8831) and Rub3′ (nts 9745–9762 plus 18 Ts). 

Primers RV8823F (ACGGACAACTCGAGGTCC) and RV9549R 

(GCAGTGGTGTGTGTGCCATAC) were used for the second round. To obtain the sequence 

of the 138 nts at the 5′ end of the genotyping window, the SuperScript III High Fidelity kit 

(Life Technologies) was used with a second nested set. Primers RV8699F-2C 

(GTCCAGCACCCTCACAAGAC) and RV8986R-PA (CCACTCCCCTGACTGTTCG) and 

RV8711F (CACAAGACCGTCCGGGTCAA) [21] and RV8910R-2C 

(CACCGGGACTGTTGGTTG) were used for the first and second rounds, respectively. 

DNA products from the positive nested-set reactions were purified with a Charge Switch-Pro 

PCR cleanup Kit (Life Technologies). The sequences were determined bidirectionally (ABI 

Prism BigDye terminator, v 3.1, Life Technologies) and run on an AB 3130 DNA Sequencer 

(Life Technologies). Sequences were analyzed using Sequencher 5.2 (Gene Codes, Ann 

Arbor, MI) and phylogenetic and distance analyses was done using the MEGA 6 program 

[22].
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4. Results

4.1. Patient history and presentation

The patient was a 73-year-old male, born and raised in the United States, with chronic iritis 

in the left eye for which he had been on and off topical steroids for many years. He had a 

history of a repaired left eye retinal detachment performed elsewhere 8 years prior with 

scleral buckle. On admission, he revealed that he had good vision for a year after the repair 

of the retinal detachment, but then developed persistent debris and floaters. The examination 

showed a vision of 20/25 and 20/40 in the right eye and the left eye, respectively. The 

heterochromia of his irises was noted as the right eye was darker than the left (Fig. 1). 

However, the patient indicated that his heterochromia was first noted at age 14. The left eye 

exhibited stellate keratic precipitates on the corneal endothelium but no cells in the anterior 

chamber. It also showed an old scleral buckle with chorioretinal scarring (Fig. 2) to the 

treated tears inferiorly and superiorly and punched out choroidal lesions suggestive of 

toxoplasmosis. The right eye was normal and the fundus examination was unremarkable. 

Additionally, the patient had notable vitreous debris and floaters in the left eye suggestive of 

FUS. He underwent a therapeutic pars plana vitrectomy in May 2013 to remove the debris 

and to improve his vision. Postoperatively, the patient’s vision improved, and the vitreous 

debris and floaters were resolved. His vision has remained intact as of this report.

4.2. Laboratory findings

At Focus Diagnostics T. gondii DNA was absent in the vitreous fluid of the patient; however, 

rubella RNA was detected despite the fact that the assay had not been validated for use with 

vitreous fluid. The vitreous fluid sample was subsequently sent to the CDC to confirm the 

initial results and to attempt to sequence and genotype the virus.

The RNA extracted from the vitreous fluid was tested with the E1 coding region real-time 

RT-PCR assay, which produced a 185 base pair (bp) product. One of three triplicate 

reactions was positive with a cycle threshold (Ct) value of 39 out of 40 and the RNAse P 
signal for the sample was positive indicating that intact cellular RNA was present. To 

confirm the presence of viral RNA in the sample, a real-time assay which amplifies a 129 bp 

product in the nonstructural open reading frame, close to the 5′ end of the genome, was also 

used. This assay resulted in 2 out of 3 positive signals for the sample with an average Ct 

value of 36.5, thereby confirming the presence of rubella RNA in the specimen. Two nested 

primer sets were necessary to amplify enough template to sequence the WHO recommended 

739 nt sequence window (nts 8731–9469). The first nested primer set, which amplified 

approximately the 3′ four-fifths of the sequence window, allowed 601 nts (8869–9469) to be 

sequenced. NCBI BLAST results for the sequence showed that genotype 2C viruses were 

the closest match. Utilizing known sequences of 2C viruses and the sequence of the 601 nts 

determined for this sample to design primers, a template for sequencing of the remaining 

138 nts of the requisite sequence window was amplified by nested set and sequenced. The 

sequence was assigned a name using an adaptation of the WHO standard rubella virus 

naming convention: RVs/Scranton.PA.USA/19.13/FUS (KP982900). The addition of FUS to 

the name indicated that the rubella sequence identified was from a case of Fuchs’ uveitis 

syndrome. The date in the name reflects the date of sample collection, rather than the date of 
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the virus infection. The mean distances between the 32 WHO reference viruses and the 

Scranton sequence were 6% (genotype 2C), 8% (genotype 1a), and 10–11% (remaining 11 

genotypes) (Fig. 3). Of the 46 nt changes between the Scranton sequence and the 2C virus, 

Moscow RUS/67, 44 occurred at the 3rd codon position. The two changes that were seen at 

the 2nd codon position both resulted in an amino acid change in the E1 protein at positions 

16/246 (V–A) and 150/246 (H–R). When compared to 190 other 739 nt sequences from all 

genotypes, the V–A change was observed in several other sequences, but the H–R change 

was unique (data not shown). The sequence of the Scranton virus was the single member of 

a deep branch from the same node as the genotype 2C viruses.

5. Discussion

Until recently, FUS remained a clinical diagnosis with an unknown etiology. The association 

between rubella infection and FUS was not recognized until 2004 [23].

On initial examination, the left eye showed an old scleral buckle with chorioretinal scarring 

and punched out choroidal lesions suggestive of toxoplasmosis. The patient also had notable 

vitreous debris and floaters suggestive of FUS. Therefore, the vitreous fluid was tested for 

the detection of T. gondii DNA and RuV RNA. An association between infectious agent(s) 

and FUS is not completely characterized, but in this case RuV was clearly found. The 

development of more sensitive nucleic acid detection tests for RuV, HSV, CMV, and 

toxoplasmosis will likely contribute to future diagnostic tests and may help with proper 

management of FUS [13,23].

Rubella was endemic in the United States during the case-patient’s entire childhood. 

Although the case-patient does not remember having rubella as a child, he reported having 

heterochromia at age 14 and, thus, presumably had rubella infection prior to that age. 

Therefore, his eye had likely been persistently infected with rubella virus for at least 60 

years (since 1953). Due to the very low amount of viral genetic material present in the 

sample, it was difficult to detect and sequence the virus. Previous studies on sequence 

analysis of whole genome sequences of rubella viruses indicated that the nucleotides near 

the 5′ terminus are the most conserved among rubella viruses [24,25]. In this case, using 

highly conserved primer binding sites present in the 5′ real-time assay likely lowered the Ct 

values compared to the real-time assay targeting the more variable E1 coding region.

The first successful rubella virus isolation occurred in 1961 [26], and the sequence of the 

1961 virus (known as M33) was the earliest known rubella virus sequence prior to this 

report. One previous report of FUS in a 28-year-old congenital rubella syndrome patient 

described 252 nt rubella sequences from both eyes which partially overlapped the standard 

genotyping window [13]. There were five nucleotide differences between the two FUS 

derived sequences which the authors attributed to independent rubella virus evolution in the 

right and left eyes. Despite the differences, both sequences were considered to belong to 

genotype 1G, a currently circulating genotype.

Phylogenetic analysis provided evidence that the Scranton virus described here was likely 

from a previously undetected genotype which is no longer circulating. Using the WHO 
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recommended 739 nt sequence, the Scranton sequence was found to be the sole member of a 

new rubella virus group and shared the most genetic similarity to genotypes 2C and 1a, 

viruses in both genotypes were collected in the 1960s and viruses in neither genotype are 

known to be currently circulating [27]. The genetic distance from the 13 known rubella 

genotypes could have two possible explanations. The long period of persistent infection 

could have led to accumulated mutations from an ancestor of one of the current genotypes or 

the distance could be due to the fact that this virus belonged to unknown, now extinct 

genotype (possibly even a different clade due to the large (6%) genetic distance from closest 

virus). The node in common with 2C viruses was not supported by a significant bootstrap 

value, indicating that the relationship between the Scranton virus and genotype 2C was not 

reliable. This reinforced the conclusion that the Scranton virus could not be classified with 

any of the currently recognized groups. The very low amount of rubella virus genetic 

material present in the sample unfortunately limited the amount of sequence available for a 

more rigorous phylogenetic analysis. Specimen handling and transportation in this case were 

sub-optimal and likely contributed to the low level of viral RNA present in the sample. We 

hope in the future, if any additional procedures are performed on the patient or on other 

similar patients, that additional samples could be procured and handled in a more efficient 

manner, perhaps enabling us to extend our rubella virus genetic studies for Fuchs’ uveitis 

patients.

A previously published evolutionary rate for the rubella 1E genotype is 1.65 × 10−3 

substitutions/site/year [28]. Although this rate is based on analysis of a different genotype, 

we used it to estimate the number of nucleotide changes that would be predicted in the 

Scranton virus. Based on the sequence length of 739 nts and a 60 year period, the number of 

nucleotides substitutions expected would be approximately 71. In this case, 46 changes are 

seen between the Scranton sequence and a genotype 2C sequence. We consider 46 to be the 

maximum number of changes from the actual parental virus (i.e., we assume the actual 

parental virus would be more closely related to the Scranton virus than the genotype 2C 

sequence); thus, we conclude that the actual substitution rate per year would likely be even 

lower. Little is known about the replication rate of virus in a long term persistent infection in 

human eye tissue; a very low rate of replication would likely reduce the number of predicted 

substitutions.

The fact that 44 of the 46 changes occurred in the 3rd codon position indicates that the 

changes were not random, and was in agreement with a previous report that 93% of RuV 

first and second codon positions were invariant, while only 48% of third codon positions 

were invariant in circulating viruses [24]. Although 2 amino acid changes were noted 

relative to other RuVs, the changes were to amino acids with similar properties: valine and 

alanine are both hydrophobic and histidine and arginine are both positively charged. The 

observed maintenance of the open reading frame and the observed amino acid substitutions 

were consistent with productive virus replication.

In summary, this study supports the role of rubella virus as a cause of FUS and suggests that 

persistent RuV presence in the eye can be the cause of chronic vision problems. In terms of 

relevance to public health, it would be interesting to investigate whether FUS patients are 
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capable of shedding infectious virus (e.g., in tears), which would be a significant observation 

since rubella has been eliminated from the United States.
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Fig. 1. 
This photo depicts the heterochromia of iris, the lighter eye is the affected eye.
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Fig. 2. 
This photo shows the pigmented chorioretinal scars centrally from old inflammation. The 

white areas are previous cryotherapy scars placed at the time of the original retinal 

detachment. In the further periphery indentation from the scleral buckle is noted.
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Fig. 3. 
The genetic relationships of the 739 nt sequences were inferred using the Neighbor-Joining 

method. The percentage of replicate trees (70% or greater) in which the associated taxa 

clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The 

genetic distances were computed using the Maximum Composite Likelihood method and are 

in units of the number of base substitutions per site. All taxa are labeled with WHO names. 

The Scranton sequence is marked with a circle.
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